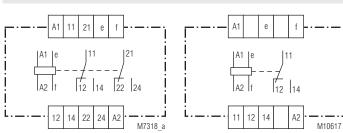
Monitoring Technique


VARIMETER Voltage Relay BA 9054

Product Description

The voltage relay BA 9054 of the VARIMETER series monitors single phase DC or AC voltage systems. The adjustment is made via potentiometers on the front of the device. Early recognition and preventive maintenance avoid interruptions of electrical plants and provides a higher operational and plant safety.

Circuit Diagrams

BA 9054

BA 9054/_ 2 _

Connection Terminals

Terminal designation	Signal description
A1, A2	Auxiliary voltage
e, f	Voltage measuring input
11, 12, 14	1st changeover contact
21, 22, 24	2nd changeover contact

Translation of the original instructions

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- · For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: monitor DC and AC
- With measuring ranges from 15 mV to 1000 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit measuring ciruit
- Auxiliary supply AC and AC/DC
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- · Optionally with safe separation to IEC/EN 61140 (on request)
- As option with manual reset
- · LED indicators for operation and contact position
- Width: 45 mm

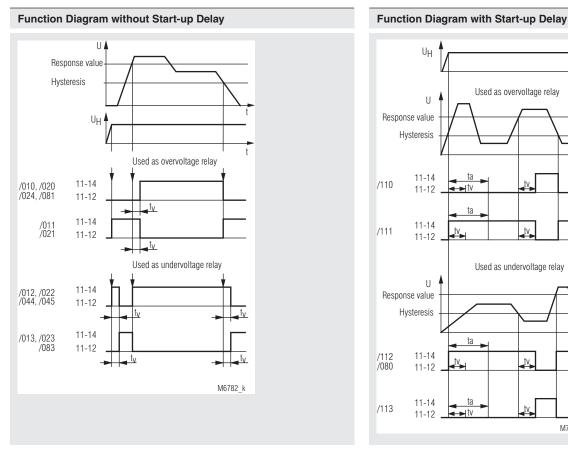
Approvals and Markings

1) Approval not for all variants

Applications

- · Monitoring voltage in AC or DC systems
- For industrial and railway applications

Function


The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:

The start up delay $t_{\rm a}$ operates only when connecting the auxiliary supply. The response delay $t_{\rm v}$ is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

Indicators

Green upper LED:	On, when auxiliary supply connected
Yellow lower LED:	On, when output relay acitvated

Version BA 9054/_1_: 2 changeover contacts Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range \geq 70 ... 700 V At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

t

M7785 f

Technical Data

Input (e, f)

Measurin	0	<u>nd</u> DC								
AC	g range" DC	internal resistance	max. permissible contin. voltage							
6 60 mV	5,4 54 mV	20 kΩ	10 V							
15 150 mV	13,5 135 mV	40 kΩ	100 V							
50 500 mV	45 450 mV	270 kΩ	250 V							
0,5 5 V	0,45 4,5 V	-								
1 10 V	0,9 9,0 V									
5 50 V	4,5 45 V	2 MΩ	500 V							
25 250 V	22,5 225 V	2 MΩ	500 V							
50 500 V	45 450 V	2 MΩ	500 V							
70 700 V ²⁾	63 630 V ²⁾	3 MΩ	1000 V							
100 1000 V ²⁾	90 900 V ²⁾	3 MΩ	1000 V							
¹⁾ DC or AC voltag		0 10122	1000 V							
Please note: - ≤ 600 V: Overvol - > 600 V: Overvol - Measuring range (Using only for cu	tage category II		nt BA 9054/08_							
Temperature influ Setting Ranges	(U)	age. The scale off = 0.90 U _{eff}) 05 % / K	sei in this case is							
Setting Response value:		Infinite variable 0.1 $U_N \dots 1 U_N$ relative scale								
Hysteresis										
at AC: at DC:	Infin	Infinite variable 0.5 0.98 of setting value								
ai DO.		Infinite variable 0.5 0.96 of setting value								
Accuracy: Response value at	Infir	ite variable 0.5 (
Accuracy: Response value at Potentiometer righ Potentiometer left	Infir t stop (max): 0	ite variable 0.5 (. + 8 %								
Accuracy: Response value at Potentiometer righ Potentiometer left Repeat accuracy (constant parametu Recovery time at devices with ma (Reset by braking	Infir t stop (max): 0 stop (min): - 10 er): ≤± nual reset	ite variable 0.5 (. + 8 %								
Accuracy: Response value at Potentiometer righ Potentiometer left Repeat accuracy (constant parameter Recovery time at devices with ma	Infire t stop (max): 0 stop (min): - 10 er): $\leq \pm$ nual reset rage) ≤ 1	 .+8% +8% 0.5%).96 of setting valu							
Accuracy: Response value at Potentiometer righ Potentiometer left Repeat accuracy (constant parameti (constant parameti (consta	Infir t stop (max): 0 stop (min): - 10 er): ≤ ± nual reset rage) ≤ 1 (der Infir from	 . + 8 % + 8% 0.5 % s bendent to function a hite variable at log 	0.96 of setting valu and auxiliary voltage arithmic scale 5, 0 60 s, 0 100							

Auxiliary voltage U_H(A1, A2)

Nominal voltage	Voltage range	Frequency range								
AC/DC 24 80 V	AC 18 100 V	45 400 Hz; DC 48 % W								
AC/DC 24 80 V	DC 18 130 V	$W \le 5 \%$								
AC/DC 80 230 V	AC 40 265 V	45 400 Hz; DC 48 % W								
AC/DC 80 230 V	DC 40 300 V	$W \le 5 \%$								
Nominal voltage	Voltage range	Frequency range								
DC 12 V	DC 10 18 V	battery voltage								

Nominal consumption:

4 VA; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Auxiliary voltage $\boldsymbol{U}_{\!H}^{}\left(A1,\,A2\right)$ for mono voltages

Technical Data

Technical Data		
Nominal voltage: Voltage range: Nominal frequency: Frequency range: Nominal consumption:	AC 24, 42, 110, 127, 0.8 1.1 U _H 50 / 60 Hz ± 5 % 2.5 VA	, 230, 400 V
Output		
Contacts: Thermal current I _{th} : Switching capacity to AC 15:	2 changeover contac 2 x 5 A	ots
NO contact: NC contact: to DC 13:	2 A / AC 230 V 1 A / AC 230 V 1 A / DC 24 V	IEC/EN 60947-5-1 IEC/EN 60947-5-1 IEC/EN 60947-5-1
Electrical life at 3 A, AC 230 V $\cos \varphi = 1$: Short-circuit strength	2 x 10 ⁵ switching cyc	
max. fuse rating: Mechanical life:	6 A gG / gL 30 x 10 ⁶ switching cy	IEC/EN 60947-5-1 /cles
General Data		
Operating mode: Temperature range:	Continuous operatio	n
Operation:	- 40 + 60 °C (higher temperature on request)	with limitations
Storage: Altitude:	- 40 + 70 °C ≤ 2000 m	
Clearance and creepage	≥ 2000 III	
distances		
Overvoltage category		
Measuring voltage		
≤ 600 V:		
> 600V: Rated impulse voltage /	II	
pollution degree		
Aux. voltage / measuring input:	6 kV / 2	IEC 60664-1
Auxiliary voltage / contacts:	6 kV / 2	IEC 60664-1
Measuring input / contacts:	6 kV / 2	IEC 60664-1
Contacts 11,12,14 / 21, 22, 24:	4 kV / 2	IEC 60664-1
EMC Electrostatic discharge:	P(k)/(air)	IEC/EN 61000-4-2
HF irradiation	8 kV (air)	IEC/EN 01000-4-2
80 MHz 1 GHz:	20 V/m	IEC/EN 61000-4-3
1 GHz 2.7 GHz:	10 V/m	IEC/EN 61000-4-3
Fast transients:	4 kV	IEC/EN 61000-4-4
Surge voltages		
between wires for power supply:	2 kV	IEC/EN 61000-4-5
between wire and ground:	4 kV	IEC/EN 61000-4-5
HF wire guided:	10 V	IEC/EN 61000-4-6
Interference suppression:	Limit value class B	EN 55011
Degree of protection		
Housing: Terminals:	IP 40 IP 20	IEC/EN 60529 IEC/EN 60529
Housing:	Thermoplastic with V	
Vibration resistance:	according to UL subj Amplitude 0.35 mm	ject 94 IEC/EN 60068-2-6
Climate resistance:	frequency 10 55 H 40 / 060 / 04	IZ IEC/EN 60068-1
Terminal designation:	+0 / 000 / 04	EN 50005
Wire connection:	2 x 2.5 mm ² solid or	
Wire fixing:	2 x 1.5 mm ² strander Plus-minus terminal	screws M3.5 with
Stripping length:	self-lifting clamping pie	ece IEC/EN 60999-1
Fixing torque:	0.8 Nm	
Mounting:	DIN-rail	IEC/EN 60715
Weight		
AC-device:	280 g	
AC/DC-device:	200 g	
Dimensions		

Dimensions

3

Width x height x depth:

45 x 75 x 120 mm

Classification to DIN EN 50	155		Ordering	Example for Variants		
Vibration and shock resistance: Ambient temperature: Protective coating of the PCB			<u>BA 9054</u> /	AC 25 250V AC/DO	Sta Tim Aux	t up delay t _a
CCC-Data					10	Overvoltage relay energized on trip
Thermal current I _{th} : Switching capacity to AC 15: to DC 13: Technical data that is in the technical data		IEC/EN 60 947-5-1 IEC/EN 60 947-5-1 C-Data, can be found				time delay at setting value Overvoltage relay de-energized on trip time delay at setting value Undervoltage relay energized on trip time delay at hysteresis value
Standard Types					13	Undervoltage relay de-energized on trip time delay
BA 9054/010 AC 25 250 V Article number: • for Overvoltage monitoring	0053642				20	at hysteresis value Same as BA 9054/024, but with additional
 Measuring range: Auxiliary voltage U_H: Time delay t_v by U_{an}: Width: 	AC 25 250 V AC/DC 80 230 V 0 20 s 45 mm				21	moisture protection Same as BA 9054/011, overloadable up to AC/DC 1000 V, 1 C/O contact
BA 9054/012 AC 25 250 V Article number: • for Undervoltage monitoring	0053714				22	Same as BA 9054/012, overloadable up to AC/DC 1000 V, 1 C/O contact
 Measuring range: Auxiliary voltage U_H: Time delay t_v by U_{ab}: Width: 	AC 25 250 V AC/DC 80 230 V 0 20 s 45 mm				23	
					24	Same as BA 9054/010, overloadable up to

	T C/O contact
32	Same as BA 9054/022,
	with 4 x AC/DC 500 V
	input resistances
	in series
46	Same as BA 9054/010,
	reduced reaction-
	time, measuring range
	DC 24 35 V, it is
	necessary to connect
	power supply before
	measuring voltage
47	Same as 46, but with
	measuring range
	DC 60 78 V
 0	Standard version
1	With start up delay t _a
2	With safe electrical
	separation of
	input- and output
	circuit accroding to
	DIN 61140 (on req.)
6	With manual reset,
	resetting by
	disconnecting the
	power supply
 Туре	1
iype	•

AC/DC 1000 V, 1 C/O contact

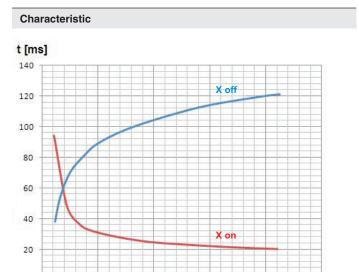
Setting

Example: Voltage relay AC 25 ... 250 V

AC according to type plate: i.e. the unit is adjusted to AC voltage $25 \dots 250 \text{ V} = \text{measuring range}$

Response value AC 150 V Hysteresis AC 75 V

Settings		
upper potentiometer:	0.6	(0.6 x 250 V = 150 V)
lower potentiometer:	0.5	(0.5 x 150 V = 75 V)


The AC-devices can also monitor DC voltage. The scale offset in this case is: \overline{U} = 0.9 x $U_{\mbox{\tiny off}}$

AC 25 ... 250 V is equivalent to DC 22.5 ... 225 V

Response value DC 150 V Hysteresis DC 75 V

Settings

upper potentiometer:	0.66	(0.66 x 225 V = 150 V)
lower potentiometer:	0.5	(0.5 x 150 V = 75 V)

M11504 a

25,00 F

Time delay of measuring circuit

5,00

0

0,00

X on: Measured value rises $F = \frac{Meas. value (after rise of meas. value)}{Setting value}$

15,00

20,00

10,00

X off: Measured value drops F = <u>Meas. value (befor meas. value drops)</u> Setting value (hysteresis)

The diagram shows the typical delay of a standard devices depending on the measured values "X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter. The total reaction time of the device results from the adjustable delay t_v and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with BA9054/010): Adjusted setting value X on = 230 V.

Caused by a missing neutral the voltage rises suddenly to 400 V

$$F = \frac{\text{Measured value (after rise of meas. value)}}{\text{Setting value}} = \frac{400 \text{ V}}{230 \text{ V}} = 1,74$$

Reading from the diagram:

The output relay switches on after 64 ms at a setting $t_{\rm v}$ =0.

Example for "X off" (undervoltage detection with BA9054/012):

Adjusted hysteresis setting value is 100 V. Caused by a broken wire the voltage drops suddenly from 230 V to 0 V.

$$F = \frac{\text{Measured value (befor meas. value drops)}}{\text{Setting value (hysteresis)}} = \frac{230 \text{ V}}{100 \text{ V}} = 2,3$$

Reading from the diagram:

The output relay switches off after 70 ms at a setting $t_{y}=0$.

 - - - - - -			 			 				- - - - - - -			 	 	 	 	
												 -					
															_		
 						 	_	 				 	 	 	 	 	
	ļ	<u>.</u>	 		 	 		 				 	 	 	 	 	
						 				· · · · · · · · · · · · · · · · · · ·			 			 	
	+		 			 							 		 	 	
	-											 					
 	-								 							 	
 	+		 		 	 		 				 	 		 	 	
 		<u>.</u>	 		 	 		 				 	 	 	 	 	
 	.		 		 	 		 				 	 	 	 	 	
 		<u>.</u>	 		 	 		 				 	 	 	 	 	
			-														

			 								-						
 	 		 		 								 	-	 		
				 		 	• • • • • • • • • •		 	 			 				
						 						_			 	 	
											-						
	 		 	 	 	 					+						
							-										
	 -																

E. Dold & Söhne GmbH & Co. KG • D-78120 Furtwangen • Bregstraße 18 • Phone +49 7723 654-0 • Fax +49 7723 654356