Translation of the original instructions

DOLD

Your Advantages

- Protection against defect by overvoltage
- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: monitor DC and AC
- With measuring ranges from 15 mV to 1000 V
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between Auxiliary Circuit - measuring ciruit
- Auxiliary supply AC and AC/DC
- Optionally with start-up delay
- With time delay, up to max. 100 sec
- Optionally with safe separation to IEC/EN 61140 (on request)
- As option with manual reset
- LED indicators for operation and contact position
- Width: 45 mm

Approvals and Markings

${ }^{1)}$ Approval not for all variants

Applications

- Monitoring voltage in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring voltage. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overvoltage relays but can also be used for undervoltage detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. The response delay t_{v} is active after exceeding a response value. On overvoltage relays the delay is active when the voltage goes over the tripping value, on undervoltage relays when the voltage drops below the hysteresis value.

Indicators

Green upper LED:
On, when auxiliary supply connected
Yellow lower LED:
On, when output relay acitvated

Function Diagram without Start-up Delay

Version BA 9054/_1_: 2 changeover contacts
Version BA 9054/_20, /_21, /_22, /_23, /_24: 1 changeover contact, measuring range ≥ 70... 700 V
At version BA 9054/6__ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (e, f)

With 1 Measuring range for $A C$ and DC			
Measuring range ${ }^{1)}$		internal	max. permissible
AC	DC	resistance	contin. voltage
6 ... 60 mV	5,4 .. 54 mV	$20 \mathrm{k} \Omega$	10 V
$15 . .150 \mathrm{mV}$	13,5 .. 135 mV	$40 \mathrm{k} \Omega$	100 V
$50 \ldots 500 \mathrm{mV}$	$45 . . .450 \mathrm{mV}$	$270 \mathrm{k} \Omega$	250 V
0,5 ... 5 V	0,45 ... 4,5 V	$500 \mathrm{k} \Omega$	300 V
$1 . .10 \mathrm{~V}$	0,9 ... 9,0 V	$1 \mathrm{M} \Omega$	300 V
$5 \ldots 50 \mathrm{~V}$	4,5 ... 45 V	$2 \mathrm{M} \Omega$	500 V
$25 . .250 \mathrm{~V}$	22,5 ... 225 V	$2 \mathrm{M} \Omega$	500 V
$50 \ldots 500 \mathrm{~V}$	45 ... 450 V	$2 \mathrm{M} \Omega$	500 V
$70 . .700 \mathrm{~V}^{2}$	$63 . . .630 \mathrm{~V}^{2)}$	$3 \mathrm{M} \Omega$	1000 V
$\left.100 . . .1000 \mathrm{~V}^{2}\right)$	$90 . . .900 \mathrm{~V}^{2)}$	$3 \mathrm{M} \Omega$	1000 V

1) DC or AC voltage $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$ on request)
${ }^{2}$) only with BA 9054/_20; /_21; /_22; /_23; /_24
(Version: 1 changeover contact)

Please note:

- ≤ 600 V: Overvoltage category III
- > 600 V: Overvoltage category II
- Measuring ranges 6 ... 60 mV only available at variant BA 9054/08_ (Using only for current sensing via shunt!)

Measuring principle:
Adjustment:

Arithmetic mean value
The AC-devices can also monitor DCvoltage. The scale offset in this case is ($\overline{\mathrm{U}}=0.90 \mathrm{U}_{\text {eff }}$)
< 0.05 \% / K
Temperature influence:

Setting Ranges

Setting

Response value:
Hysteresis
at AC:
at DC:

Accuracy:

Response value at
Potentiometer right stop (max): $0 \ldots .+8 \%$
Potentiometer left stop (min): $\quad-10 \ldots .+8 \%$
Repeat accuracy
(constant parameter): $\leq \pm 0.5 \%$
Recovery time
at devices with manual reset
(Reset by braking
of the auxiliary voltage
BA 9054/6
_ - :
Time delay t_{v} :

Start-up delay t_{a} :
BA 9054/1 _ _:

Infinite variable $0.1 \mathrm{U}_{\mathrm{N}} \ldots 1 \mathrm{U}_{\mathrm{N}}$ relative scale

Infinite variable 0.5 ... 0.98 of setting value Infinite variable $0.5 \ldots 0.96$ of setting value
≤ 1 s
(dependent to function and auxiliary voltage) Infinite variable at logarithmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay
$1 \ldots 20 \mathrm{~s} ; 1 \ldots 60 \mathrm{~s} ; 1 \ldots 100 \mathrm{~s}$,
adjustable on logarithmic scale. t_{a} is started when the supply voltage is connected. During elapse of time the output contact is in good state

Auxiliary voltage $\mathbf{U}_{H}(\mathrm{~A} 1, \mathrm{~A} 2)$

Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	$\mathrm{AC} 18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz}$; DC $48 \% \mathrm{~W}$
	$\mathrm{DC} 18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{AC} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	$\mathrm{DC} 40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal voltage	Voltage range	Frequency range
DC 12 V	DC $10 \ldots 18 \mathrm{~V}$	battery voltage

Technical Data

Nominal voltage:	AC 24, 42, 110, 127, 230, 400 V
Voltage range:	$0.8 \ldots 1.1 U_{H}$
Nominal frequency:	$50 / 60 \mathrm{~Hz}$
Frequency range:	$\pm 5 \%$
Nominal consumption:	2.5 VA
Output	
Contacts:	2 changeover contacts
Thermal current $\mathrm{I}_{\text {th }}$:	2×5 A
Switching capacity to AC 15:	
NO contact:	$2 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60947-5-1
NC contact:	$1 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60947-5-1
to DC 13:	$1 \mathrm{~A} / \mathrm{DC} 24 \mathrm{~V}$ IEC/EN 60947-5-1
Electrical life	
at $3 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$:	2×10^{5} switching cycles
Short-circuit strength	
max. fuse rating:	6 A gG / gL IEC/EN 60947-5-1
Mechanical life:	30×10^{6} switching cycles
General Data	
Operating mode:	Continuous operation
Temperature range:	
Operation:	$-40 \ldots+60^{\circ} \mathrm{C}$
	(higher temperature with limitations
Storage:	$-40 \ldots+70^{\circ} \mathrm{C}$
Altitude:	$\leq 2000 \mathrm{~m}$
Clearance and creepage	
Overvoltage category	
Measuring voltage	
$\leq 600 \mathrm{~V}$:	III
> 600V:	II

Rated impulse voltage / pollution degree
Aux. voltage / measuring input: 6 kV / $2 \quad$ IEC 60664-1
Auxiliary voltage / contacts: 6 kV / 2 IEC 60664-1
Measuring input / contacts: $6 \mathrm{kV} / 2 \quad$ IEC 60664-1
Contacts 11,12,14 / 21, 22, 24: 4 kV / 2 IEC 60664-1
EMC
Electrostatic discharge
HF irradiation
$80 \mathrm{MHz} . . .1 \mathrm{GHz}$:
1 GHz ... 2.7 GHz :
Fast transients:
Surge voltages
between
wires for power supply: $\quad 2 \mathrm{kV} \quad$ IEC/EN 61000-4-5
between wire and ground: $\quad 4 \mathrm{kV}$ IEC/EN 61000-4-5
HF wire guided:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:

Climate resistance:
Terminal designation:
Wire connection

Wire fixing:

Stripping length:
Fixing torque:
Mounting:

Weight

AC-device:
AC/DC-device:

Dimensions

Width x height x depth: $\quad 45 \times 75 \times 120 \mathrm{~mm}$

10 V
IEC/EN 61000-4-6
Limit value class B
EN 55011
IP 40
IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplastic with V0 behaviour
according to UL subject 94
Amplitude 0.35 mm IEC/EN 60068-2-6
frequency $10 \ldots 55 \mathrm{~Hz}$
$40 / 060$ / 04
IEC/EN 60068-1
EN 50005
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded wire with sleeve
Plus-minus terminal screws M3.5 with
self-lifting clamping piece IEC/EN 60999-1
10 mm
0.8 Nm

DIN-rail
IEC/EN 60715
IEC/EN 61000-4-2
IEC/EN 61000-4-3
IEC/EN 61000-4-3
IEC/EN 61000-4-4

280 g
200 g

Nominal consumption: $\quad 4 \mathrm{VA} ; 1.5 \mathrm{~W}$ at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized voltages
Auxiliary voltage $\mathbf{U}_{H}(\mathrm{~A} 1, \mathrm{~A} 2)$ for mono voltages

Classification to DIN EN 50155

Vibration and shock resistance:

Ambient temperature:

Category 1, Class B OT1, OT2 compliant
OT3 and OT4 with operational limitations
Protective coating of the PCB: No

CCC-Data		
Thermal current $\mathrm{I}_{\text {th }}:$	5 A	
Switching capacity to AC 15: to DC 13: AC 230 V IEC/EN 60 947-5-1 $1 \mathrm{~A} / \mathrm{DC} \mathrm{24} \mathrm{V}$ IEC/EN 60 947-5-1		

$\mathrm{I}_{\mathrm{nfo}}$
 Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Types	
BA 9054/010 AC $25 . . .250 \mathrm{~V}$	AC/DC 80 ... 230 V
Article number:	0053642
- for Overvoltage monitoring	
Measuring range:	AC $25 \ldots 250 \mathrm{~V}$
- Auxiliary voltage U_{H} :	AC/DC $80 \ldots 230 \mathrm{~V}$
Time delay tv_{v} by $\mathrm{U}_{\text {an: }}$	$0 . .20 \mathrm{~s}$
Width:	45 mm
9054/012 AC 25 ... 250 V	AC/DC 80 ... 230 V
ticle number:	0053714
for Undervoltage monitoring	
Measuring range:	AC $25 \ldots 250 \mathrm{~V}$
Auxiliary voltage U_{H} :	AC/DC $80 \ldots 230 \mathrm{~V}$
- Time delay t_{v} by U_{ab} :	0 ... 20 s
- Width:	45 mm

Ordering Example for Variants

BA $9054 I_{-}-\frac{A C 25 \ldots 250 \mathrm{~V}}{\text { AC/DC } 80 \ldots 230 \mathrm{~V}} \frac{0 \ldots 20 \mathrm{~s}}{} \frac{1 \ldots 20 \mathrm{~s}}{L}$
Start up delay t_{a}
Time delay t
Auxiliary voltage
Measuring range
10 Overvoltage relay energized on trip time delay at setting value
11 Overvoltage relay de-energized on trip time delay at setting value
12 Undervoltage relay energized on trip time delay at hysteresis value Undervoltage relay de-energized on trip time delay at hysteresis value
20 Same as BA 9054/024, but with additional moisture protection
21 Same as BA 9054/011, overloadable up to AC/DC 1000 V $1 \mathrm{C} / \mathrm{O}$ contact overloadable up to AC/DC 1000 V, $1 \mathrm{C} / \mathrm{O}$ contact
23 Same as BA 9054/013, overloadable up to AC/DC 1000 V $1 \mathrm{C} / \mathrm{O}$ contact overloadable up to AC/DC 1000 V, $1 \mathrm{C} / \mathrm{O}$ contact
32 Same as BA 9054/022 with $4 \times$ AC/DC 500 V input resistances in series
46 Same as BA 9054/010, reduced reactiontime, measuring range DC $24 \ldots 35 \mathrm{~V}$, it is necessary to connect power supply before measuring voltage
47 Same as 46, but with measuring range DC 60 ... 78 V

Standard version With start up delay t_{a} With safe electrical separation of input- and output circuit accroding to DIN 61140 (on req.)
6 With manual reset, resetting by disconnecting the power supply

Setting

Example:
Voltage relay AC $25 \ldots 250 \mathrm{~V}$
AC according to type plate:
i.e. the unit is adjusted to AC voltage
$25 \ldots 250 \mathrm{~V}=$ measuring range
Response value AC 150 V
Hysteresis AC 75 V

Settings
$\begin{array}{lll}\text { upper potentiometer: } & 0.6 & (0.6 \times 250 \mathrm{~V}=150 \mathrm{~V}) \\ \text { lower potentiometer: } & 0.5 & (0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})\end{array}$

The AC-devices can also monitor DC voltage. The scale offset in this case is: $\bar{U}=0.9 \times U_{\text {eff. }}$

AC 25 ... 250 V is equivalent to DC 22.5 ... 225 V
Response value DC 150 V
Hysteresis DC 75 V
Settings
upper potentiometer: $\quad 0.66 \quad(0.66 \times 225 \mathrm{~V}=150 \mathrm{~V})$
lower potentiometer:
$0.5(0.5 \times 150 \mathrm{~V}=75 \mathrm{~V})$

Characteristic

M1504 a

Time delay of measuring circuit
X on: Measured value rises $F=\frac{\text { Meas. value (after rise of meas. value) }}{\text { Setting value }}$
X off: Measured value drops $F=\frac{\text { Meas. value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter. The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overvoltage detection with BA9054/010): Adjusted setting value X on $=230 \mathrm{~V}$.
Caused by a missing neutral the voltage rises suddenly to 400 V
$F=\frac{\text { Measured value (after rise of meas. value) }}{\text { Setting value }}=\frac{400 \mathrm{~V}}{230 \mathrm{~V}}=1,74$
Reading from the diagram:
The output relay switches on after 64 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undervoltage detection with BA9054/012):
Adjusted hysteresis setting value is 100 V .
Caused by a broken wire the voltage drops suddenly from 230 V to 0 V .
$F=\frac{\text { Measured value (befor meas. value drops) }}{\text { Setting value (hysteresis) }}=\frac{230 \mathrm{~V}}{100 \mathrm{~V}}=2,3$
Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

