Monitoring Technique
VARIMETER
Speed Monitor
BA 9055, AA 9050

Product Description

The speed monitors BA 9055 and AA 9050 monitors the rotational speed of motors. They recognise and monitor impulse signals of proximity sensors and protect machines and produced material or allows speed depending switching in production processes.

Function Diagram

BA 9055.11, AA 9050.11

- According to IEC/EN 60255-1
- Detection of
- Underspeed
- Overspeed
- Standstill
- Adjustable response value
- BA 9055 with adjustable start-up delay
- AA 9050 with adjustable hysteresis
- Width 45 mm

Approvals and Markings

C

Applications

Speed monitors are used in case where it is necessary not to exceed certain speed limits in order to protect plants and products against damage. The Speed monitors are used on conveyors, transfer lines as well as plants where several drives with a certain speed have to work together.

Function

The measuring principle is to compare frequencies. With a proximity sensor the speed is converted to a speed proportional frequency. This frequency is compared to an internal adjustable frequency reference. If the measured frequency is higher then the reference the output relay is energized on an underspeed monitor or de-energized on an overspeed monitor. The output relay deenergises on an underspeed monitor if the speed goes under the setted hysteresis value. On the overspeed monitor the relay is energized. The reaction time is rather short, as the unit has no intergrating function. To calculate refer to formula in Function Diagram. The power supply for the proximity sensor is built into the unit. The input is designed for pnp sensors. The speed monitor has an integrated start-up delay. The unit is delivered with a bridge between terminals X3-X4. The start-up delay is activated when the power supply is connected to A1-A2.
For the start- up time the output relay is energized. If no start-up delay is required, the bridge must be removed. The start-up delay can be activated also by external contacts connected to X3-X4.
The start-up delay normally is not required with overspeed monitoring. An LED indicates the connected power supply. A second LED indicates the state of the output relay.

Connection Terminals
Terminal designation Signal description A1 L / + A2 N / - ,+ o Current supply proximity sensors n Measuring input $X 3, X 4$ Programming terminals $11,12,14$ Speed indicator relay (two-way contact)

Technical Data	
Input Circuit	
Input:	For proximity sensors, built in power supply DC 24 V , max. 40 mA
Setting range:	
Min. pulse length:	1 ms
Max. frequency:	30000 lpm
Setting:	Infinite on relative scale
Setting accuracy:	$\leq \pm 3 \%$
Response value:	$0.1 \ldots 1$ of end of scale value
Hysteresis:	
BA 9055:	2% of response value
AA 9050:	2 ... 30% of response value
Accuracy:	$\leq \pm 1 \%$
Temperature influence:	$\leq \pm 0.1 \% /{ }^{\circ} \mathrm{C}$
Influence of auxiliary supply: Start up delay	$< \pm 0.5 \%$ at $0.9 \ldots 1.1 \mathrm{U}_{\mathrm{N}}$
BA 9055:	$1 . . .20 \mathrm{~s}$
AA 9050:	10 s (up to 60 min . available)

Auxiliary Circuit
Auxiliary voltage U_{H} : BA 9055:

AA 9050:
Voltage range of U_{H} :
AC:
DC:
Nominal cons
Nominal frequ
Output Circuit

Contacts:
 Thermal current $\mathrm{I}_{\text {th }}$

Switching capacity
To AC 15:
Electrical life
At $6 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$:
Permissible switching
frequency:
Short circuit strength
max. fuse rating:
Mechanical life:

AC 24, 110, 127, 230, 240 V
DC 24 V
AC 24, 110, 230 V
DC 24 V
$0.8 \ldots 1.1 U_{H}$
$0.9 \ldots 1.2 U_{H}$
<4VA
$50 / 60 \mathrm{~Hz}$

1 changeover contac
6 A
5 A / AC $230 \mathrm{~V} \quad$ IEC/EN 60947-5-1
$>2 \times 10^{5}$ switch. cycl. IEC/EN 60947-5-1
6000 switching cycles / h
4 A gG / gL IEC/EN 60947-5-1
$>30 \times 10^{6}$ switching cycles

General Data

Operating mode:
Temperature range
Operation:
Storage:
Altitude:
Clearance and creepage

distances

Rated impulse voltage /
pollution degree:
EMC
HF-irradiation
80 MHz ... 2,7 GHz:
Fast transients:
Surge voltages
Between
wires for power supply:
Between wire and ground:
HF-irradiation:
Interference suppression:
Degree of protection
Housing:
Terminals:
Housing:
Vibration resistance:
Climate resistance:
Terminal designation:

Technical Data

Wire connection:

Stripping length:
Wire fixing:
Screw mounting
AA 9050:
Fixing torque:
Mounting:
Weight:
BA 9055:
AA 9050:
$2 \times 2.5 \mathrm{~mm}^{2}$ solid or $2 \times 1,5 \mathrm{~mm}^{2}$ stranded wire with sleeve DIN 46228-1/-2/-3/-4 10 mm
Flat terminals with self-lifting clamping piece

IEC/EN 60999-1
$35 \times 50 \mathrm{~mm}$ and
$35 \times 60 \mathrm{~mm}$
0.8 Nm

DIN rail
IEC/EN 60715

Dimensions

Width x height x depth

BA 9055:	$45 \times 74 \times 124 \mathrm{~mm}$
AA 9050:	$45 \times 77 \times 127 \mathrm{~mm}$

Classification to DIN EN 50155 for BA 9055

Vibration and
shock resistance: Category 1, Class B IEC/EN 61373
Protective coating of the PCB: No

Standard Type

BA 9055 AC $230 \mathrm{~V} 50 / 60 \mathrm{~Hz} 10 \ldots 100 \mathrm{lpm} 1 \ldots 20 \mathrm{~s}$
Article number: 0030731

- Output: 1 changeover contact
- Nominal voltage U_{N} : \quad AC 230 V
- Setting range: $\quad 10 \ldots 100 \mathrm{lpm}$
- Width:

45 mm

Variants

BA 9055, AA 9050: Standstill and underspeed monitoring with start up delay, closed circuit operation overspeed monitoring with start up delay, open circuit operation
BA 9055/100,
AA 9050/100:
Standstill and underspeed monitoring without start up delay, closed circuit operation overspeed monitoring without start up delay, open circuit operation
BA 9055/110,
AA 9050/110:
Standstill and underspeed monitoring without start up delay, open circuit operation
overspeed monitoring without start up delay, closed circuit operation
BA 9055/140:
Standstill and underspeed monitoring with start up delay, open circuit operation overspeed monitoring with start up delay, closed circuit operation

Ordering example for variants

For further information on the initiators, please refer to the associated NA 5001 data sheet at www.dold.com.

