

SEMITRANS® 3

Superfast NPT-IGBT Modules

SKM 200GB063D

Features

- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology without hard mould
- · Large clearance (13 mm) and creepage distances (20 mm)

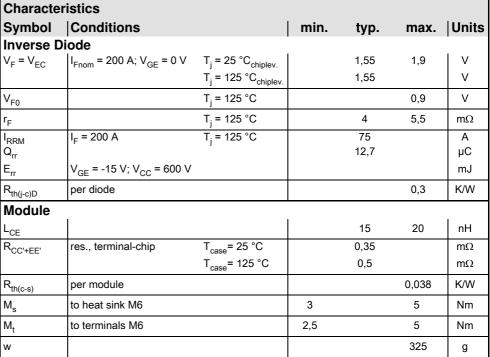
Typical Applications*

- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- Welding inverters

Absolute Maximum Ratings T _c = 25 °C, unless otherwise speci								
Symbol	Conditions		Values	Units				
IGBT								
V_{CES}	T _j = 25 °C		600	V				
I _C	T _j = 150 °C	T _{case} = 25 °C	260	Α				
		T _{case} = 70 °C	200	Α				
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	Α				
V_{GES}			± 20	V				
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C	10	μs				
Inverse Diode								
I _F	T _j = 150 °C	T_{case} = 25 °C	200	Α				
		T _{case} = 80 °C	135	Α				
I _{FRM}	I _{FRM} =2xI _{Fnom}		400	Α				
I _{FSM}	$t_p = 10 \text{ ms}; \sin.$	T _j = 150 °C	1400	Α				
Module								
I _{t(RMS)}			500	Α				
T_{vj}		·	- 40 + 150	°C				
T _{stg}			- 40 + 125	°C				
V _{isol}	AC, 1 min.		2500	V				

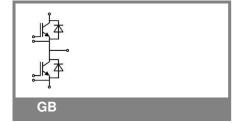
Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						_
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V _{CE0}		T _j = 25 °C		1,05		V
		T _j = 125 °C		1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		5,3		mΩ
		T _j = 125°C		7		$m\Omega$
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,4	2,8	V
C _{ies}				11,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		1,25		nF
C _{res}				0,75		nF
Q_G	V _{GE} = 0V - +15V			480		nC
R _{Gint}	T _j = °C			0		Ω
t _{d(on)}				140		ns
t _r	$R_{Gon} = 8 \Omega$	$V_{CC} = 300V$		70		ns
Ė _{on}	D 00	I _C = 200A		11		mJ
t _{d(off)}	$R_{Goff} = 8 \Omega$	T _j = 125 °C		442		ns
t _f		$V_{GE} = \pm 15V$		45		ns
E _{off}				7,5		mJ
$R_{th(j-c)}$	per IGBT				0,14	K/W

Superfast NPT-IGBT Modules


SKM 200GB063D

Features

- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CFsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
- Latch-up free
- · Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding Technology without hard mould
- Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications*

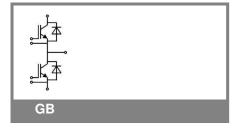
- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- · Welding inverters

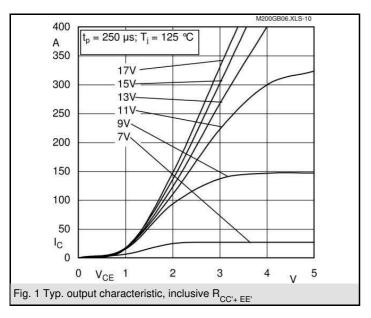
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

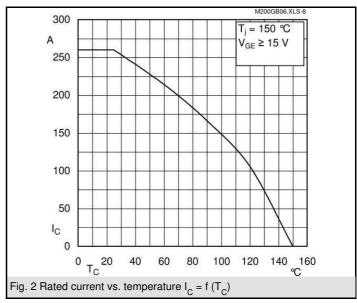
* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

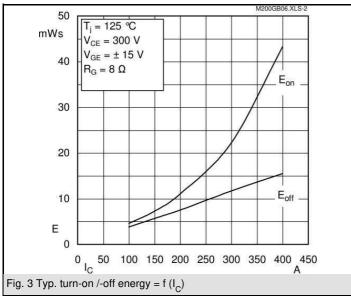
Superfast NPT-IGBT Modules

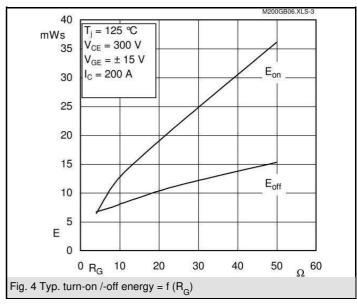
SKM 200GB063D


Z _{th}							
Symbol	Conditions	Values	Units				
$ \begin{array}{c c} \mathbf{Z_{th(j-c)l}} \\ R_i & i=1 \\ \end{array} $ $ \begin{array}{c c} \text{mk/W} \end{array} $							
R _i	i = 1	90	mk/W				
R_i	i = 2	39	mk/W				
R_{i}	i = 3	9	mk/W				
R_{i}	i = 4	2	mk/W				
tau _i	i = 1	0,0416	s				
tau _i	i = 2	0,0139	s				
tau _i	i = 3	0,0021	s				
tau _i	i = 4	0,0001	s				
Z _{th(j-c)D}			·				
R _i	i = 1	200	mk/W				
R_i	i = 2	84	mk/W				
R_i	i = 3	14	mk/W				
R_i	i = 4	2	mk/W				
tau _i	i = 1	0,0275	s				
tau _i	i = 2	0,0413	s				
tau _i	i = 3	0,0019	s				
tau _i	i = 4	0,004	s				


Features


- N channel, homogeneous Silicon structure (NPT - Non punch-through IGBT)
- · Low tail current with low temperature dependence
- High short circuit capability, self limiting if term. G is clamped to E
- Pos. temp.-coeff. of V_{CEsat}
- 50 % less turn off losses
- 30 % less short circuit current
- Very low C_{ies}, C_{oes}, C_{res}
 Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using **DCB Direct Copper Bonding** Technology without hard mould
- · Large clearance (13 mm) and creepage distances (20 mm)


Typical Applications*


- Switched mode power supplies
- AC inverter servo drives
- UPS uninterruptable power supplies
- Welding inverters

