

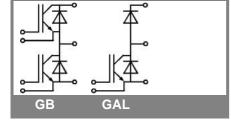
SEMITRANSTM 3

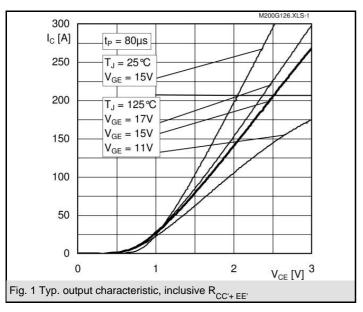
Trench IGBT Modules

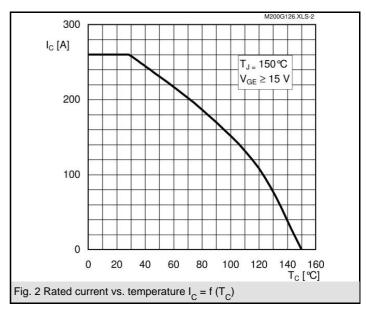
SKM 200GB126D SKM 200GAL126D

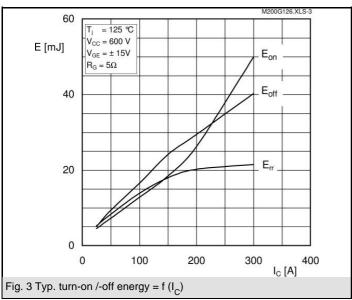
Preliminary Data

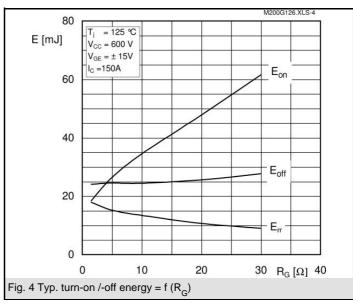
Features

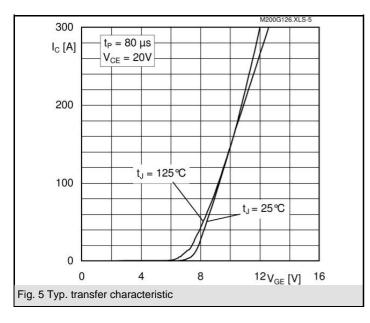

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

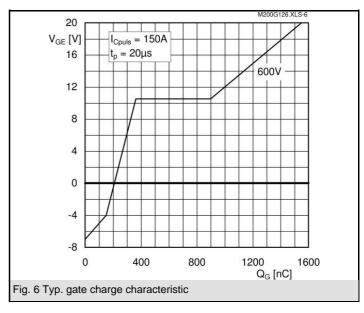

Typical Applications

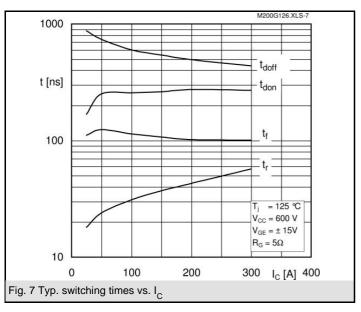

- Electronic welders
- AC inverter drives
- UPS

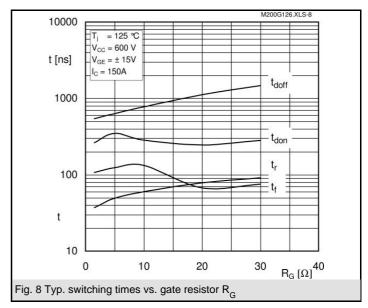

Absolute I	Maximum Ratings	T _{case} = 25°C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
I _C	$T_c = 25 (80) ^{\circ}C$	260 (190)	Α					
I _{CRM}	$T_c = 25 (80) ^{\circ}C, t_p = 1 \text{ms}$	520 (380)	Α					
V_{GES}	·	± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V _{isol}	AC, 1 min.	4000	V					
Inverse diode								
I _F	T _c = 25 (80) °C	200 (140)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	520 (380)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	Α					
Freewheeling diode								
I _F	T _c = 25 (80) °C	200 (140)	Α					
I _{FRM}	$T_c = 25 (80) ^{\circ}\text{C}, t_p = 1 \text{ms}$	520 (380)	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 \text{ °C}$	1100	Α					

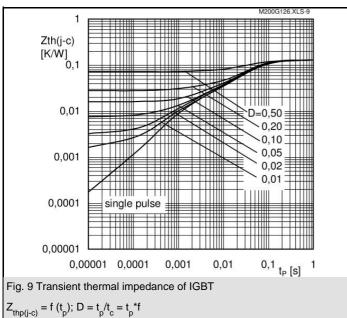

Characteristics T _{cas}		se = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 6 \text{ mA}$	5	5,8	6,5	V
I _{CES}	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) °C$		0,1	0,3	mA
V _{CE(TO)}	$T_j = 25 (125) ^{\circ}C$		1 (0,9)	1,2 (1,1)	V
r _{CE}	$V_{GE} = 15 \text{ V}, T_j = 25 (125) ^{\circ}\text{C}$		4,7 (7,3)	6,3 (9)	mΩ
V _{CE(sat)}	I_C = 150 A, V_{GE} = 15 V, chip level		1,7 (2)	2,15 (2,45)	V
C _{ies}	under following conditions		10,8		nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		0,9		nF
C _{res}			0,9	20	nF
L _{CE}	(405) °C		0.05 (0.5)	20	nH
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ
t _{d(on)}	V _{CC} = 600 V, I _C = 150 A		260		ns
t _r	$R_{Gon} = R_{Goff} = 1.5 \Omega, T_j = 125 ^{\circ}C$		40 540		ns
t _{d(off)}	V _{GE} ± 15 V		110		ns ns
t _f			18 (24)		mJ
E _{on} (E _{off})			10 (24)		1110
Inverse o		Í	4.0 (4.0)	4.0.(4.0)	1
$V_F = V_{EC}$	$I_F = 150 \text{ A; V}_{GE} = 0 \text{ V; T}_j = 25 (125) ^{\circ}\text{C}$		1,6 (1,6)	1,8 (1,8)	V
V _(TO)	T _j = 25 (125) °C T _i = 25 (125) °C		1 (0,8) 4 (5,3)	1,1 (0,9) 4,7 (6)	ν mΩ
r _T I _{RRM}	I _F = 150 A; T _i = 25 (125) °C		240	4,7 (0)	A
Q _{rr}	di/dt = 5000 A/µs		42		μC
E _{rr}	V _{GE} = 0 V		18		mJ
FWD	GE				
V _F = V _{EC}	I _F = 150 A; V _{GE} = 0 V, T _i = 25 (125) °C	Ì	1,6 (1,6)	1,8 (1,8)	V
V _(TO)	$T_i = 25 (125) ^{\circ}C$		1 (0,8)	1,1 (0,9)	V
r _T	T _i = 25 (125) °C		4 (5,3)	4,7 (6)	mΩ
I _{RRM}	I _F = 150 A; T _i = 125 () °C		240		Α
Q_{rr}	di/dt = 5000 Å/µs		42		μC
E _{rr}	$V_{GE} = 0 V$		18		mJ
Thermal	characteristics				•
R _{th(j-c)}	per IGBT			0,13	K/W
R _{th(j-c)D}	per Inverse Diode			0,3	K/W
$R_{th(j-c)FD}$	per FWD			0,3	K/W
$R_{th(c-s)}$	per module			0,038	K/W
Mechanic	cal data				
M_s	to heatsink M6	3		5	Nm
M_t	to terminals M5	2,5		5	Nm
w				325	g
	•				

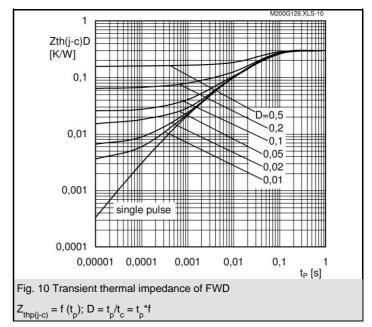


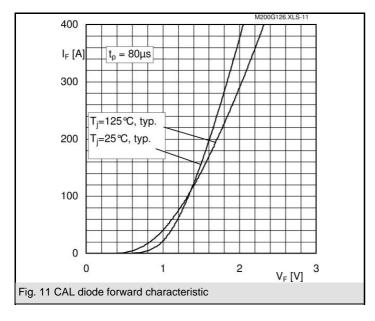


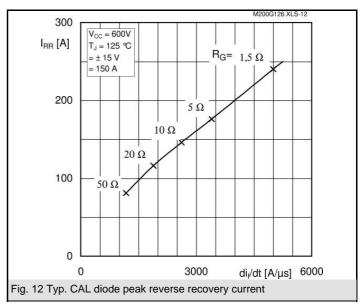


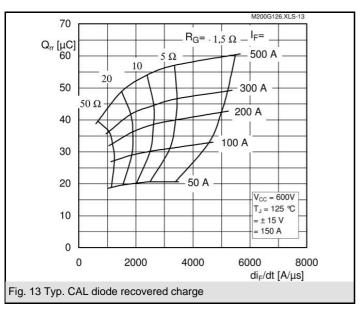


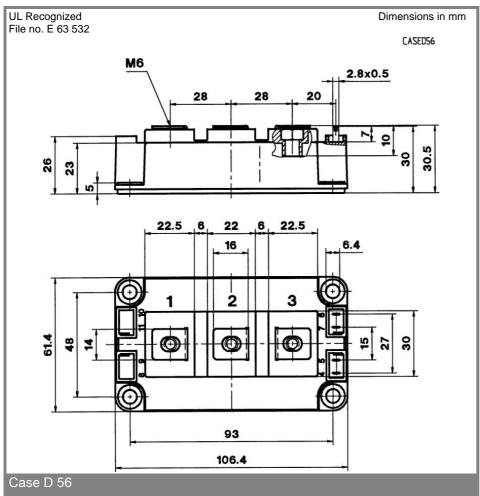


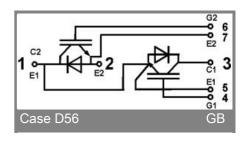


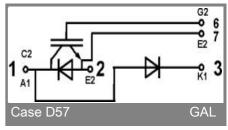












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.